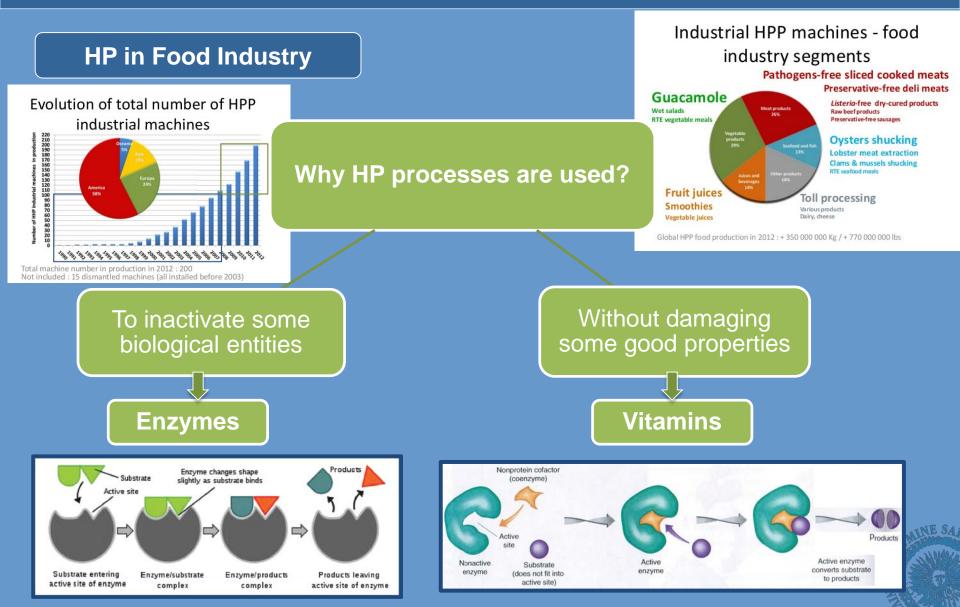


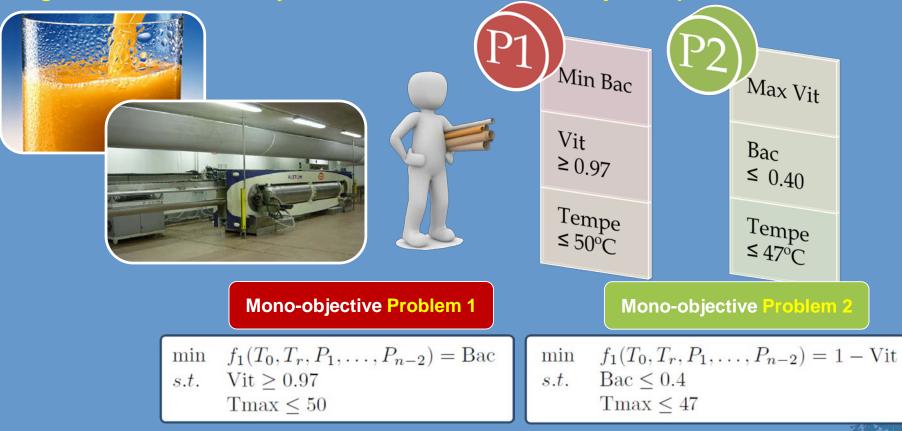
M.R. Ferrández¹, J.L. Redondo¹, B. Ivorra², P.M. Ortigosa¹ and A.M. Ramos²

¹ Universidad de Almería (Spain)
² Universidad Complutense de Madrid (Spain)

CAPAP-H VIII Seminario de Invierno 30 - 31 Enero 2017 UMH - Elche



1. Introduction


2

1. Introduction

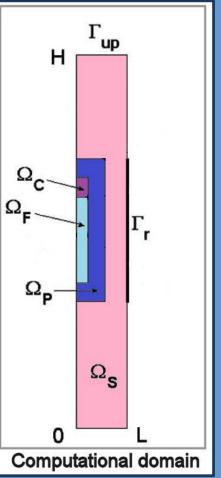
Our proposal: A decision tool

- Different treatments satisfying specific quality requirements can be demanded.
- The general idea: is to provide to the decision maker a set of points which are individually good solutions for many different constrained mono-objective problems.

3

2. Mathematical model

Heat transfer


$$\begin{cases} \rho C_p \frac{\partial T}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(rk \frac{\partial T}{\partial r} \right) - \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) = \alpha \frac{dP}{dt} T & \text{in} \quad \Omega \times (0, t_{\rm f}) \\ k \frac{\partial T}{\partial \mathbf{n}} = 0 & \text{on} \quad \Gamma \backslash (\Gamma_{\rm r} \cup \Gamma_{\rm up}) \times (0, t_{\rm f}) \\ k \frac{\partial T}{\partial \mathbf{n}} = h(T_{\rm amb} - T) & \text{on} \quad \Gamma_{\rm up} \times (0, t_{\rm f}) \\ T = T_{\rm r} & \text{on} \quad \Gamma_{\rm r} \times (0, t_{\rm f}) \\ T(0) = T_0 & \text{in} \quad \Omega \end{cases}$$

Enzymatic inactivation

$$A(r, z, t) = A(r, z, 0) \exp\left(-\int_0^t \kappa(P(\sigma), T(\sigma)) d\sigma\right)$$

 $\kappa(P, T)$ is the inactivation rate (min-1)

$$\kappa(P,T) = \kappa_{\rm ref} \exp\left(-B\left(\frac{1}{T} - \frac{1}{T_{\rm ref}}\right)\right) \exp\left(-C(P - P_{\rm ref})\right)$$

4

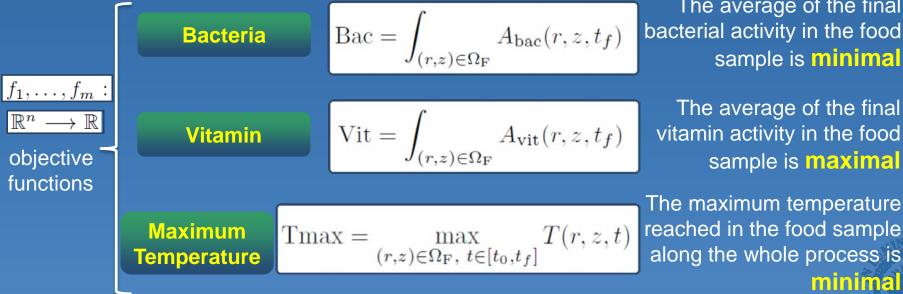
5

3. Optimization

Multi-objective problem

Find the optimal HP configuration

 $\min\{f_1(\mathbf{x}), \dots, f_m(\mathbf{x})\}$ s. t. $\mathbf{x} \in S \subseteq \mathbb{R}^n$

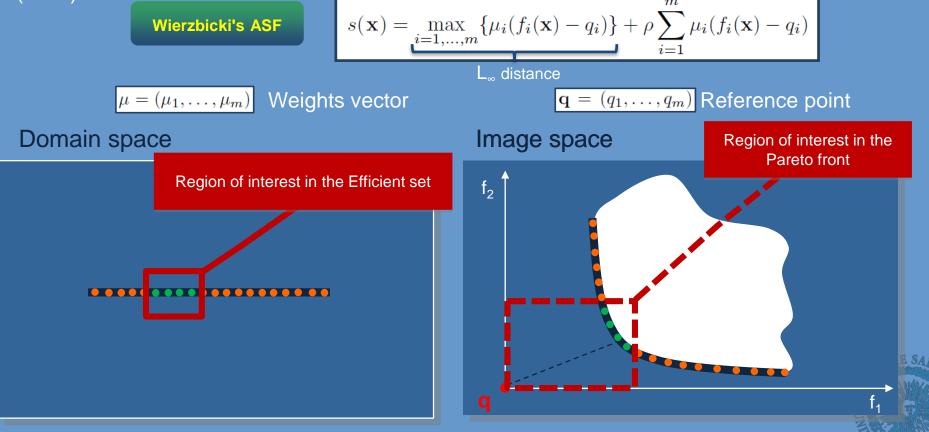

 T_0 (initial temperature), T_r (refrigeration temperature) – $(T_0, T_r, P_1, \dots, P_{n-2})$ decision vector $\mathbf{x} = (x_1, \dots, x_n)$ P(t) (pressure)

ria
$$\operatorname{Bac} = \int_{(r,z)\in\Omega_{\mathrm{F}}} A_{\operatorname{bac}}(r,z,t_f)$$

such that

The average of the final bacterial activity in the food sample is **minimal**

The maximum temperature along the whole process is minimal



6

3.1. Algorithm WASF-GA

Basic concepts

WASF-GA is an evolutionary multi-objective optimization algorithm which takes into account the DM's preferences using an achievement scalarizing function (ASF)

4. Computational experiments

Decision tool

We want to show that, in the practice, if the food engineer has available the set of points belonging to this three-dimensional Pareto front approximation, then he/she has individually good solutions for many different constrained mono-objective problems.

□ For instance:

Mono-objective Problem 1

$$\begin{array}{ll} \min & f_1(T_0,T_r,P_1,\ldots,P_{n-2}) = \text{Bac} \\ s.t. & \text{Vit} \ge 0.97 \\ & \text{Tmax} \le 50 \end{array}$$

Mono-objective Problem 2

min	$f_1(T_0, T_r, P_1, \dots, P_{n-2}) = 1 - \text{Vit}$
s.t.	$Bac \le 0.4$
	$Tmax \le 47$

	Bac	Vit	Tmax
Mono	0.2519	0.9777	49.9721
Multi	0.2518	0.9892	49.7714

	Bac	Vit	Tmax
Mono	0.3973	0.9933	46.9664
Multi	0.3832	0.9957	46.5664