A Case for Malleable Thread-Level Linear Algebra Libraries: The LU Factorization with Partial Pivoting

Sandra Catalán, José R. Herrero, Enrique S. Quintana-Ortí, Rafael Rodríguez-Sánchez, Robert van de Geijn

The LU factorization (Right-looking variant)

Look-ahead to overlap RL1 with remaining kernels

| Algorithm:
$$[A] := LU_{LA_BLK}(A)$$
 | Determine block size b | $A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$, $A_{BR} \to \begin{pmatrix} A_{BR} & A_{BR} \\ A_{BL} & A_{BR} \end{pmatrix}$, $A_{BR} \to \begin{pmatrix} A_{BR} & A_{BR} \\ A_{BL} & A_{BR} \end{pmatrix}$, $A_{BR} \to k$ columns $A_{BR}^P := LU_{LUNB}(A_{BR}^P)$ | while $n(A_{TL}) < n(A)$ do | $A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}$ | where A_{11} is $b \times b$ | Determine block size b | % Partition into panel factorization and remainder | $\begin{pmatrix} A_{12} & A_{12} \\ A_{22} & A_{22} \end{pmatrix} \to \begin{pmatrix} A_{12}^P & A_{12}^P \\ A_{22}^P & A_{22}^P & A_{22}^P \end{pmatrix}$ | where both A_{12}^P , A_{22}^P have b columns | FF1 | A_{12}^P |

T_{RU}>T_{PF}: Malleable BLIS

 $T_{PF}>T_{RU}$: Early Termination (ET)

T_{RU}>T_{PF}: Malleable BLIS

$T_{PF}>T_{RU}$: Early Termination (ET)

Experimental evaluation

LU on Intel Xeon E5-2603 v3

